REPORT NO. UMTA-MA-06-0074-81-2

MBTA PASSENGER DEMAND ANALYSES, 1977

Betty S. Kwok Lawrence M. Jordan

U.S. DEPARTMENT OF TRANSPORTATION RESEARCH AND SPECIAL PROGRAMS ADMINISTRATION Transportation Systems Center Kendall Square Cambridge MA 02142

AUGUST 1981 FINAL REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION URBAN MASS TRANSPORTATION ADMINISTRATION Office of Planning Management and Demonstrations Office of Transportation Management Washington, DC 20590

HE 18.5 .A37 DOT-TSC-UMTA-80-45

1-

NOTICE

1 -

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

1 Papart No	2 6	Accession No	13 0	ecinient's Cotalog N				
	2. Obvernmen							
UMTA-MA-06-0074-81-2	1							
I. Title ond Subtitle		DEPARTMENT OF TRANSPORTATION	5. R	August 1981				
MBTA PASSENGER DEMAND ANAL	YSES, 1977.		6. P	erforming. Organizati	on Code			
		APR 8 1983	D	TS-722				
. Author's) Betty S Knol		1 m	8. Performing Organization Report No.					
Lawrence M. Jordan		LIBRARY	D	OT-TSC-UMTA-	80-45			
Performing Organization Nome and Addr	ess	and the part of the second	10.	Work Unit No. (TRAI	S) _			
Research and Special Progr	rtation ams Adminis	stration	U	M037/R0721				
ransportation Systems Cen endall Square	ter		11.	Contract or Grant No).			
Cambridge MA 02142			13.	Type of Report and P	Period Covered			
.S. Department of Transpo	rtation	•		Final Report				
rban Mass Transportation	Administrat	lon	1	May - June 19	977			
ffice of Transportation M	anagement	unstrations	14. :	Sponsoring Agency C	ode			
ashington DC 20590	0		U	РМ-40				
A survey was made of BTA Green Line. All the ew light rail vehicles wi epresent the "before" seg	the number old PCC str thin the ye ment of a b	of passengers usin reetcars on that 1 ear. Therefore, t before-and-after s	ng th ine w his c urvey	e Highland B ere to be re ount was int to estimate	ranch of th placed by ended to increase i			
A survey was made of BTA Green Line. All the ew light rail vehicles wi represent the "before" seg emand due to the new vehi theory for the stations an estimates of total passeng	the number old PCC str thin the ye ment of a b cles. Anal d suggested er movement	of passengers usin reetcars on that 1 ear. Therefore, t before-and-after s lysis of the data d that fairly spar t acceptable at th	ng th ine w his c urvey confi se sa e 90	e Highland B ere to be rep ount was into to estimate rmed a "marko mpling could percent conf	ranch of th placed by ended to increase i et share" yield idence leve			
A survey was made of BTA Green Line. All the ew light rail vehicles wi epresent the "before" seg emand due to the new vehi heory for the stations an estimates of total passeng	the number old PCC str thin the ye ment of a h cles. Anal d suggested er movement	of passengers usin reetcars on that 1 ear. Therefore, t before-and-after s lysis of the data that fairly spar acceptable at th	ng th ine w his c urvey confi se sa e 90	e Highland B ere to be rep ount was into to estimate rmed a "marko mpling could percent conf	ranch of th placed by ended to increase i et share" yield idence leve			
A survey was made of BTA Green Line. All the ew light rail vehicles wi represent the "before" seg emand due to the new vehi theory for the stations an estimates of total passeng	the number old PCC str thin the ye ment of a b cles. Anal d suggested er movement	of passengers usin reetcars on that 1 ear. Therefore, t before-and-after s lysis of the data d that fairly spar t acceptable at th	ng th ine w his c urvey confi se sa e 90	e Highland B ere to be re ount was int to estimate rmed a "mark mpling could percent conf	ranch of th placed by ended to increase i et share" yield idence leve			
A survey was made of BTA Green Line. All the ew light rail vehicles wi epresent the "before" seg emand due to the new vehi heory for the stations an stimates of total passeng	the number old PCC str thin the ye ment of a b cles. Anal d suggested er movement	of passengers usin reetcars on that 1 ear. Therefore, t before-and-after s lysis of the data that fairly spar c acceptable at th	ng th ine w his c urvey confi se sa e 90	e Highland B ere to be rep ount was into to estimate rmed a "marke mpling could percent conf	ranch of th placed by ended to increase i et share" yield idence leve			
A survey was made of BTA Green Line. All the ew light rail vehicles wi epresent the "before" seg emand due to the new vehi heory for the stations an stimates of total passeng	the number old PCC str thin the ye ment of a h cles. Anal d suggested er movement	of passengers usin reetcars on that 1 ear. Therefore, t before-and-after s lysis of the data d that fairly spar t acceptable at th	ng th ine w his c urvey confi se sa e 90	e Highland B ere to be re ount was into to estimate rmed a "marko mpling could percent conf PARTMENT OF	ranch of th placed by ended to increase i et share" yield idence leve			
A survey was made of BTA Green Line. All the ew light rail vehicles wi epresent the "before" seg emand due to the new vehi heory for the stations an stimates of total passeng	the number old PCC str thin the ye ment of a b cles. Anal d suggested er movement	of passengers usin reetcars on that 1 ear. Therefore, t before-and-after s lysis of the data that fairly spar cacceptable at th	ng th ine w his c urvey confi se sa e 90	e Highland B ere to be rep ount was into to estimate rmed a "marko mpling could percent conf PARTMENT OF ANSPORTATION	ranch of th placed by ended to increase i et share" yield idence leve			
A survey was made of BTA Green Line. All the ew light rail vehicles wi epresent the "before" seg emand due to the new vehi heory for the stations an stimates of total passeng	the number old PCC str thin the ye ment of a b cles. Anal d suggested er movement	of passengers usin reetcars on that 1 ear. Therefore, t before-and-after s lysis of the data d that fairly spar t acceptable at th	ng th ine w his c urvey confi se sa e 90 DE TRA	e Highland B ere to be rej ount was into to estimate rmed a "marko mpling could percent conf PARTMENT OF ANSPORTATION PR 8 1983	ranch of th placed by ended to increase i et share" yield idence leve			
A survey was made of BTA Green Line. All the ew light rail vehicles wi epresent the "before" seg emand due to the new vehi heory for the stations an stimates of total passeng	the number old PCC str thin the ye ment of a b cles. Anal d suggested er movement	of passengers usin reetcars on that 1 ear. Therefore, t before-and-after s lysis of the data that fairly spar t acceptable at th	ng th ine w his c urvey confi se sa e 90	e Highland B ere to be rep ount was into to estimate rmed a "marko mpling could percent conf PARTMENT OF ANSPORTATION PR 8 1983	ranch of th placed by ended to increase i et share" yield idence leve			
A survey was made of BTA Green Line. All the ew light rail vehicles wi epresent the "before" seg emand due to the new vehi heory for the stations an stimates of total passeng	the number old PCC str thin the ye ment of a h cles. Anal d suggested er movement	of passengers usin reetcars on that 1 ear. Therefore, t before-and-after s lysis of the data that fairly spar t acceptable at th	ng th ine w his c urvey confi se sa e 90	e Highland B ere to be rej ount was into to estimate rmed a "marko mpling could percent conf PARTMENT OF ANSPORTATION PR 8 1983 LIBRARY	ranch of th placed by ended to increase i et share" yield idence leve			
A survey was made of BTA Green Line. All the ew light rail vehicles wi epresent the "before" seg emand due to the new vehi heory for the stations an stimates of total passeng	the number old PCC str thin the ye ment of a b cles. Anal d suggested er movement	of passengers usin reetcars on that 1 ear. Therefore, t before-and-after s lysis of the data 1 that fairly spar t acceptable at th	ng th ine w his c urvey confi se sa e 90	e Highland B ere to be rep ount was into to estimate rmed a "marko mpling could percent conf PARTMENT OF ANSPORTATION PR 8 1983 LIBRARY	ranch of th placed by ended to increase i et share" yield idence leve			
A survey was made of BTA Green Line. All the new light rail vehicles wi represent the "before" seg lemand due to the new vehi theory for the stations an estimates of total passeng	the number old PCC str thin the ye ment of a b cles. Anal d suggested er movement	of passengers usin reetcars on that 1 ear. Therefore, t before-and-after s lysis of the data that fairly spar acceptable at th	ng th ine w his c urvey confi se sa e 90 DE TR/ A	e Highland B ere to be rep ount was into to estimate rmed a "marke mpling could percent conf PARTMENT OF ANSPORTATION PR 8 1983 LIBRARY	ranch of th placed by ended to increase i et share" yield idence leve			
A survey was made of BTA Green Line. All the ew light rail vehicles wi epresent the "before" seg emand due to the new vehi heory for the stations an stimates of total passeng 7. Key Words Passenger Counts, Statisti	the number old PCC str thin the ye ment of a b cles. Anal d suggested er movement	of passengers usin reetcars on that 1 ear. Therefore, t before-and-after s lysis of the data d that fairly spar t acceptable at th 18. Distribution Stor	ng th ine w his c urvey confi se sa e 90 DE TR/ A	e Highland B ere to be rep ount was into to estimate rmed a "marko mpling could percent conf PARTMENT OF ANSPORTATION PR 8 1983 LIBRARY	ranch of th placed by ended to increase i et share" yield idence leve			
A survey was made of BTA Green Line. All the ew light rail vehicles wi epresent the "before" seg emand due to the new vehi heory for the stations an stimates of total passeng A Key Words Passenger Counts, Statisti Estimation of Passenger De	the number old PCC str thin the ye ment of a b cles. Anal d suggested er movement	of passengers usin reetcars on that 1 ear. Therefore, t before-and-after s lysis of the data d that fairly spar t acceptable at th 18. Distribution Stor ng, t DOCUMENT THROUGH	ng th ine w his c urvey confi se sa e 90 DE TR/ A	e Highland B ere to be rep ount was into to estimate rmed a "marka mpling could percent conf PARTMENT OF ANSPORTATION PR 8 1983 LIBRARY	ranch of th placed by ended to increase i et share" yield idence leve			

h

Reproduction of completed page authorized

.

<u>.</u> -

ч. Т

PREFACE

<u>.</u> -

The present study is performed under Project Plan Agreement UM-37, sponsored by the U.S. Department of Transportation, Urban Mass Transportation Administration, Office of Planning Management and Demonstrations, Office of Transportation Management, UPM-40. It is undertaken for the calibration and the analyses of MBTA passenger data to be used as an input to the main operational performance simulation model being developed under the same PPA. Acknowledgement is given to Mary Roos and George H. Wang of TSC Code 20 for their direction and helpful advice in the study.

v
2
0
-
5
2
-
_
22
5
Ś
- 45
-
>
2
0
ē
-
دع
-
æ
-
-
- 55

1 -

	a start			ž	1.	r 1	Li				٦	ı ` ı	î						3 4	2					a ≕ 1	. 1	; 1	i'e	ĩ				:	•				_	
: Mosuros	To Find			In Ches	In ches		and a state				and an and an	Annual Variation	Bound miles	BELTEN											fluid autocre	and a		Subsc lease	Cubic yards					Fabruation 1 Langua Atar		100		00 00	
reiene from Matric	Maltiply by	LENGTH		0.04	0.4					AREA				2.6			ASS (weight)		900.0	1:	1.1		VOLUME		0.03	17	8.7	2.0	-			PERATURE (exact)						20 140	
Appreximete Conve	When Yos Knew			millimaters	contimeters	And and						Inquires Continuents	answer hildmenters	hectares (10.000 m ²					Ł	hi lograme	tomes (1000 hg)				militars	1-tears	1:1ara	triants	cubic metana					Calevie temperature		X		02-	
	Symbol			ŧ	5	£	ε.	5			٦	57	, ⁷ 1	1	1					2					ĩ	•			E Î	ł				°,			ф <u>4</u>	1	
33	33	111 III I	02		62 		• 2 		٤٦ 			1	1 11111		 		1 	21		•••				•	101	3	-	1		9		•			c				
9 1 1	, , , , ,		. .	ļ	l, l,	·1.	7	. 1.1		ı.l.	1	s . .	l.1	1	''	1	3 	1.1.	' ''	'['	1	•	.ı.	'1	' '		3 '	.I	1	' '	1	3	 1	' ' ' 	יוי		' ' 		1 ⁶
	la de la de					5	đ	E	5			٦	57	: "16	^ 5	1			•	. 2	1 -				ī	ĩ	ĩ	-			.7	Ē			°.				
Moeseres	Ta find						Cantington (maters	k.i.cmeters			Southern Paral strategy	source metara	source malars	equare hilometers	hectaras				in the second second	tomes				multuletare	multiliters	mililitars	fi Level	i three	trier.	cubic materia	cubic meters			Catarua	temperature			
ersione to Metric I				LENGTH		2.5	Ŗ	0.0	11	4.00	AREA				2.0	0.4		ASS (weight)	2	0 44	0.0		VOLUME		•	:	2	9.24	0.47	6. A		97.0	and a second sec	MATURE (stact)	6/9 Isher	Inderscheinig .			
Approximate Conv	When You Know					te has		y and a	miles			-	anitat feet	Antitation and a section	aquare milas	MCTNA.			Queca I.	-	wheri tons	(2000 16)			ten apoon a	table spoon e	flued cunces	Cupe	pints	and a	and and	cubic yards			f abrenha I	a role mechanik			
	i des					5	i z	PA	ě			-,	173	- 1					2	1	•				1	-	2	3	Z		13	. 7	1		••				

iv

TABLE OF CONTENTS

Page		Section
1	INTRODUCTION	I.
3	ANALYSIS OF PASSENGER FLOW BY TEMPORAL DIVISION.	II.
6	SPATIAL DISTRIBUTION OF PASSENGER DEMAND	III.
9	GENERATION OF PASSENGER DEMAND	IV.
22	DISTRIBUTION OF THE DWELL TIME	v.
26	CONCLUSION AND SUMMARY	VI.
28	1 - MARKET SHARE ANALYSIS	APPENDIX
33	2 - ANALYSIS OF DWELL TIME	APPENDIX

4.-

LIST OF ILLUSTRATIONS

Figure		Page
1	DEMAND DISTRIBUTION	8
2	INBOUND RAW SERIES	11
3	INBOUND SMOOTH SERIES (SMOOTHED OVER A LENGTH OF 5)	11
4	OUTBOUND RAW SERIES	12
5	OUTBOUND SMOOTH SERIES (SMOOTHED OVER A LENGTH OF 11)	12
6	EXPECTED NUMBER OF PASSENGERS WAITING AT STATION J	21
7	DECISION FLOW CHART	27
	LIST OF TABLES	

4 -

Table		Page
1	TRIP DISTRIBUTION SAMPLE	2
2	AVERAGE PASSENGERS PER TRIP	4
3	SMOOTHED PASSENGER DATA FOR TOTAL TRIPS	13
4	A CONSOLIDATED ONE-DAY INBOUND SCHEDULE	19
5	STATISTICAL ANALYSIS OF DWELL TIME	23

vi

I. INTRODUCTION

This report summarizes findings resulting from a special transit'study which included 67 inbound trips (Riverside-Fenway) and 69 outbound trips (Fenway-Riverside) of patronage data collected between May 23 and June 1, 1977. This was about 15% of the trips for that period. The parameters measured during each trip for each of the 13 stations are: the time of arrival, the total boarding passengers, total alighting passengers, and the dwell time with comments on extraneous delay. Subsequently, statistics such as the total movement (= total on + total off), the load of vehicle upon immediate departure from the station, and the total trip time can also be calculated. The 15% sample was collected from over a wide spectrum of time periods and days of the week so that an average profile of ridership and transit operation can be delineated. Also, the reliability of the data thus collected is assessed and discussed with respect to the requirement of the MBTA Green Line operational simulation model being developed under Project Plan Agreement UM-37.

It is assumed throughout the course of analysis that the number of passengers boarding an inbound train (or the number of passengers alighting an outbound train) at a station truly reflects the passenger demand of the system at that station during the period, and is independent of the number of cars associated with that trip. It is of course conceivable that during rush hours, this assumption may be invalid because the volume of patrons boarding a train depends upon the load already carried by the train. However, data on the load factors show

that this measure rarely goes beyond "medium" even during rush hours. Hence train capacity (number of cars) is not considered.

A few trips are deleted from the inbound data because they reflected the effects of unusual conditions (scheduled baseball games) which resulted in a large influx of people into Fenway or Kenmore stations. These trips were on 5/31/77 at 4:58pm, 5:42pm, 6:32pm and 6:42pm.

1.5

The sample is distributed over time as outlined in Table 1.

Date			Tı <u>Obs</u> e	rved	Trips Generated by MBTA over the same period	Sampling	Fractions
5/23	Mon	6am-lpm	Inbound Outbound	9 10	5 7 5 3		.16 .19
5/24	Tues	lpm-8pm "	Inbound Outbound	10 9	5 2 5 3		.19 .17
5/25	Wed	6am-lpm "	Inbound Outbound	8 8	59 53		.14 .15
5/26	Thurs	lpm-8pm "	Inbound Outbound	11 10	52 53		.21 .19
5/27	Fri	6am-lpm "	Inbound Outbound	10 10	57 53		.18 .19
5/31	Tues	lpm-8pm "	Inbound Outbound	11(-4) 13	52 53		.21 .25
6/1 1	Wed	6am-8pm "	Inbound Outbound	10 8	107 106		.09 .08

TABLE 1. TRIP DISTRIBUTION SAMPLE

II. ANALYSIS OF PASSENGER FLOW BY TEMPORAL DIVISION

A. Estimated daily volume of patronage (from the 13 stations)

It was discovered in the early stages of the study by ranking the trips according to their passenger volume, and testing the distribution of the ranks within each day, that the average daily passenger demand does not vary significantly from day to day. Hence all trip data thus collected are treated as if they have come from a single population rather than from five (Môn-Fri) different ones. The matrices in Tables 2.a and 2.b show the results of stratifying the trips by the hours.

Estimated daily inbound volume is:

$$Y = \frac{N \sum N_{h} - \tilde{y}_{h}}{\sum_{h}^{N} h} = 107 \times 81.62 = 8734$$

where N is the total number of inbound trips in one day, (=107) and \overline{y}_h is the average number of trips per day in stratum (hour) h. The variance of Y is:

$$V(Y) = N^{2} \sum_{h=1}^{N} N_{h}^{2} (1 - f_{h}) \sigma_{\tilde{y}_{h}}^{2} = 245,380.84$$

standard error = $\sqrt{V(Y)}$ = 495 or 5.7%, Hence a 95% confidence interval for the actual total inbound volume is (Y ± 1.96 $\times \sqrt{V(Y)}$), which is (7793,9704). Similarly, from the outbound matrix, estimated daily outbound volume, X, is :

$$X = \frac{N \sum N_{h} \bar{x}_{h}}{\sum N_{h}} = 106 \times 93.33 = 9893$$

where N is the total number of outbound trips from 6:00 am to 8:00 pm. In this case, N = 106.

$$V(X) = \frac{N^{2} \sum N_{h}^{2} (1-f_{h}) \overline{x}_{h}}{(\sum N_{h})^{2}} - \frac{1}{2} \sum_{h=1}^{N_{h}} \frac{1}{2} \sum_{h$$

Standard error = $\sqrt{V(X)}$ = 558 or 5.8%. Hence a 95% confidence interval for the actual total outbound volume is (X ± 1.96 $\times \sqrt{V(X)}$), which is (8799,10987).

TABLE 2. AVERAGE PASSENGERS PER TRIP

a. Inbound Boarding

4

1 -

6-7 7-8 8-9 9-10 10- 11- 12- 1- 2-3 3-4 4-5 5-6 6-7 7-8 am. 11 12 1pm 2 Approx. # of trips, N, generated during sampling period 32 36 24 24 24 32 28 36 28 32 28 36 32 36 # of trips in sample, 5 3 5 5 5 4 4 5 5 5 3 3 4 8 n_h sampling fraction, .16 .08 .16 .18 .14 .14 .13 .18 .14 .16 .08 .13 .17 .33 n_h/N_h Avg. total loading passengers per trip, 44 109 170 84 72 49 74 83 88 107 73 63 61 40 Ϋ́_h sample variance, σyh 55 19 19 22 23 51 48 46 12 24 21 9 13 64 standard error of yh' Gyh 6 37 25 9 9 11 11 23 22 21 7 14 11 3

b. Outbound Deboarding

Time of Day	6-7 am	7-8	8-9	9-10	10-11	11-12	12-1pm	1 -2	2-3	3-4	4-5	5-6	6-7	7-8
Approx. # of trips, N _h , generated during sampling period	24	32	36	28	32	28	32	28	32	32	36	32	28	24
# trips in sample, ⁿ h	7	3	4	4	6	3	5	5	4	5	4	5	6	4
sampling fraction, ${n_h^{/N}}_h$.29	.09	.11	.14	.19	.11	.16	.13	.13	.16	.11	.16	.21	.17
Avg. total deboarding passengers per trip, ^x h	42	45	126	106	54	89	72	84	104	117	166	110	87	77
Standard error of $\hat{x}_{h}, \hat{\tau}_{\bar{x}_{h}}$	5	7	17	22	16	27	10	24	35	28	15	24	25	21

B. Time distribution of passenger demand by time of day

Comparing the inbound demand (dominated by boarding passengers) with the outbound demand (dominated by disembarking passengers) shows that one time series is almost the mirror image of the other, except that the latter is more erratic and the demand remains relatively high in the evening hours. This latter fact could explain the difference in the total passenger volume estimated earlier. The 95% confidence intervals around the total inbound and total outbound passenger volume estimates overlap, which indicates that the difference as supported by the data is not necessarily significant. Note also that the afternoon peak for outbound trains (4-5:00pm) occurs one and a half hours later than for inbound trains (2-3:00pm).

Another interesting observation from Tables 2.a and 2.b is the reliability of the estimates for the passenger demand for an average trip. Even though an average demand statistic is obtained for each time period, the variation, \mathcal{T}_{y_h} (or \mathcal{T}_{x_h}) of the individual trip demand around the mean is under the function. In fact, the average variability for any trip, regardless of which time period it falls into, is, for inbound trips,

$$\sigma_{y} = \sqrt{\frac{\sum (n_{h} - 1)}{(\sum n_{h}) - 13}} = 34$$

and for outbound trips,

1 -

$$T_{\rm x} = \sqrt{\frac{\sum (n_{\rm h} - 1) \, \sigma^2}{(\sum n_{\rm h}) - 13}} h = 44$$

If an estimate is required of a flow rate at a particular time, then a sampling window of 60 minutes or more permits considerable shifting of the mean. The high variability alludes to not only the fluctuating nature of passenger demand, but also the effect which any departure from the train schedule may have on the load factor.

III. SPATIAL DISTRIBUTION OF PASSENGER DEMAND

As reported earlier, marked differences exist in the level of inbound passenger demand among the thirteen surface stations with Newton Center, Riverside, Brookline Village, Fenway, Woodland being the busier stations. This section attempts to quantify the spatial distribution of demand across these stations. The first question is whether such a spatial distribution is similar from hour to hour, so that an overall cross-sectional profile can be obtained for all time periods.

 $p_j^{(k)} = n_j^{(k)}/n^{(k)}$, station j's share of the trip demand for the time period k.

Our hypothesis is:

ð. -

$$H_0: p_j^{(1)} = p_j^{(2)} = \dots = p_j^{(K)} = p_j$$
 for all j

The χ^2 test of homogeneity is employed, for which the test statistic,

$$D = \Sigma \Sigma \frac{n^{(k)} [p_{j}^{(k)} - p_{j}]^{2}}{p_{j}},$$

is calculated for both the morning and afternoon shifts.

Under the hypothesis H_0 , D will be distributed as a χ^2 statistic with (13-1)*(K-1) degrees of freedom, where K is the number of hourly periods. Since over 20% of the expected values in the subsequent contingencytable (see Appendix 1A) is less than 5, a modified test is used. The details are shown in Appendixes 1, A-E, with the results of the test clearly indicating the acceptance of our hypothesis. Hence, for any inbound or outbound trip, the distribution of demand across the stations is depicted by Figure 1.

A note of interest is that while 77% of the total passengers on an inbound trip go beyond the Fenway Station and into the underground, only an estimated 69% of those on the outbound train originate from the underground stations. Although this difference seems significant, percentages can be misleading since 77% of the inbound passengers is approximately 8734 x .77 = 6725, and 69% of the outbound passengers is 9893 x .69 = 6826. Thus it is reasonable to presume that people using the line to get in town generally get back by the same means.

FIGURE 1. DEMAND DISTRIBUTION

IV. GENERATION OF PASSENGER DEMAND

To derive probability distribution functions, $f_{jt}(x)$, for the generation of the number of passengers getting on or off at station j and time t, previous conclusions on constant market shares for the thirteen stations prove to be useful. Suppose a train leaving the originating station at time t has its expected total trip passengers represented by X_{+} , then the expected number of people getting on this trip from station j is $p_{j}X_{+}$. If the probability distribution which generates the total trip demand is a Poisson distribution with paramenter $\lambda_{+}h$, where h is the arbitrary headway, then $f_{jt}(x)$ is a Poisson distribution with paramenter $p_{i\lambda_{t}}$ h. The choice of the Poisson distribution follows from the hypothesis that the batch size of passengers arriving at a station within the time interval h has a probability expressed by the Poisson function. $p_{j}\lambda_{t}$, then, becomes the rate of arrival at station j when the train leaves the originating station at time t.

It remains to determine the set of values λ_t 's. However, the estimation of such paramenters requires repeated sampling at time t, which is not available at present. The next preferable solution is to regard our data series as one analogous to a discrete time series, u_t , t=1,2..., (interpolating

Feller, William, "An Introduction to Probability Theory and Its Applications," p.156-164.

if necessary to estimate the missing $u_t's$ and fitting a time trend to the series by a simple moving average of certain length, say 2L+1. Then,

 $\hat{u}_t = 1/(2L+1) [u_{t-L}+\cdots+u_{t-1}+u_t+u_{t-1}+\cdots+u_{t+L}]$ For example, for a length of 5,

 $\hat{u}_{t} = 1/5[u_{t-2}+u_{t-1}+u_{t+1}+u_{t+2}]$

· -

Figures 2 through 5 show the inbound and outbound raw series and the extracted time trends using simple moving averages of length 5 and 11 and data from Tables 3.a and 3.b. It is worthy to note that these smoothed series are by no means a differentiable function of time, so that they cannot be modeled by any deterministic function such as a polynomial of a high order.

Having derived a smoothed series \hat{u}_t , t=1,2,.., the λ_t 's are obtained by simply dividing \hat{u}_t by Δt , where Δt is the time elapsed between trip t-1 and t. Table 4 shows the actual schedule of the inbound trips, together with the time of arrival at each station along the line. Note also that while Δt denotes the time in minutes, the subscript t represents the trip number, which in turn can be translated into time using Table 4. Figure 6 clarifies the application of λ_+ in the Poisson probability density.

4.

<u>'</u> -

OUTBOUND RAW SERIES

4.

RIP-	SCHED.	HDWY_		BOARDING	COUNTS			DEBOARDI	NG COUNTS	
	START AT RIVE	reide	RAW	INTERP.	SMOOTHED	RESID.	RYA	INTERP.	SHOOTHED	RESID.
4	SiA9	360		21	t ut-	6				0
	5159		24	24			5			2
3	61 9	10		30	37	1	•	11	10	1
Ă	6116-	- 1	48	48				16		1
5	6123	7		54	50	4		16	14	2
6		7	60	60			16		14	2
7	6137	7		52	52	0		13	13	0
	6144-						10	10 -		
9	6151	7		48	51	-3		11	12	*1
										<u> </u>
11	71 5	4		57	57	0		10	15	Ň
	7 . 1 9	9	69	69			10	19	1.9	
13	7+26						• •	19	19	Ô
15	7:33	7		73	83	•10		20	22	•2
-16	7:40	7		77	106		21-		25	
17	7 : 47	7		129	127	2		29	30	+1
		7	182							
19	81 2	8		174	173	1		42	40	2
-20	8110-		1.66				46		44	
21	8118	5	216	216	188	28	•7	47	47	0
-22	8120		403	491	185		5.0		4 8	
23	8134	8	103	103	180	3	52	34 AR	40	2
25	8:50	8		1 2 9					38	
26	8158	8	116	116	130	=14	29	29	31	•2
27	91 6	8		116	116	0		25	25	0
28	9114	8	116	116	101		20	20	20	0
29	9122	8		92	93	=1		16	18	=2
. 3.0	9130		67	67		-1.9	_11	11	16	•5
- 31	9138	8	73	73	77	-4	19	19	15	4
32	9;46	8 .					16.	16		. 2
33	9154	5		73	78	•5		14	15	•1
-34	101 2	- · · · · · · · · ·	05		80				15	<u></u>
35	10110		28	98	79	14	\$7	17	15	4
30	10110				92			17	10 -	
- 37	10120	8		59	67	- 8		17	15	2
19	10142	8	45	45	- 65	=20	16	16	14	2
40	10150	8					6			
41	10:58	8	74	74	49	25	14	14	9	5
42		0			- 47	•26		3.	6	• 3 .
43	11114	8		29	41	•12		4	7	= 3
-44	11;22				3.7			5	6	•1
45	11:30	8	45	45	45	0	7	1	7	0
- 40	-11138-	<u>-</u>	£		52		10	· ····································	10	· ····································
47	11140	8	02	02 4 E	27	3	12	1 4	14	1
40	121 2		69	0.3 AQ	64	- <u>-</u>	18	18	15	3
50	12:10	8		65	61	2	• •	16	15	1
50	12:18	8		61	62	=1		14	14	0
52	12126				60	a]				
53	12134	8		58	60	-2	-	12	12	0
54	-12:42			60	- 69	9		12	13	
55	12:50	8	52	62	70		12	12	14	-2
5.6	- 12158	8	107	1.07	68-		- 17	. 17	15	2 .

a. Boarding/Deboarding Data Smoothed over 5 Trips (Inbound Trips)

TABLE 3.a (Cont.	.)
------------------	----

1-

TOTO	RCHED	HDwy		BOARDING	COUNTS			DEBOARDI	NG COUNTS	
IBAP	ETADT		RAH	INTERP.	SHOOTHED	RESID.	RAW	INTERP.	SHOOTHED	RESID.
	WIAD+									
57	131 6		- 51	\$1		lissa∰⊈ a s	14 .		15	.
58	13114			5 Z	73	•21		15	16	=1
-59	-1.2 + 22	. 8	- 43		6.6		11	11	15	
60	13130	8	101	101	63	38	17	17	14	3
61	13:38	8		- 73	. 79	 6		_15	17	.#2
62	13146	8	45	45	75	=30	12	12	17	=5
63	13:54 .	8	132	132	. 66		32	32	18	
64	141 2	8	26	26	68	=42	11	11	22	=11
- 65 .	141 9		-			. =:22				6
66	14:16	7	84	84	70	14	32	32	27	5
67-	14123	7	89	89		- 4	37	. 37	32	5
68	14:30	7		95	95	0		36	35	1
69	14137	7		101	101	0	·· • ··	35.	35	
70	14144	7		107	108	-1		34	33	1
71	14151	7		114	110	4		12	32	0
	44458	7	121	121	108	43	30	30	30	0
73	18.5	7	***	107	114	-7	- 0	28	30	•2
74	15.17	7	0.9	92	1 2 7	= 35	26	26	11	•5
./ 4	10114	7	74	135	128	- 35		12	31	1
	10112 -		170	470	120		80	19		9
70	15120	7	1/3	125	140	57		29	29	0
···-/	13133			···· ···· <u>L</u> &	449	and t	10	19		
78	15140	4	/1	0.5	112		19	28	20	-2
- 29	1519/ -					410			- 41	· • • • • • • • • • • • • • • • • • • •
80	15124	4	100	100	87	13	31	31	27	-
- 81	- 164 -1	· /							-28	
82	161 *	<u> </u>		80	88	•2		29	28	1
8.3	_16/15		78							
84	16122	7	₩2	82	80	2	22	22	24	•2
85.	16;29	7				· · · Z . · ·			23	·
86	16;36	7		74	73	1		22	22	0
87	16;43 _	7			69			. 22	22	0
88	16150	7		64	66	=2		22	22	0
		7	.59		66		21	21 .	23	• 2
90	171 5	8		66	68	•2		24	23	1
91	17113	8	<u>. 7.4</u>	74			28	28	22	6
92	17121	8	79	79	69	- 10	20	20	22	•2
93_	17:29	8		70	66			. 19		-1
94	17;40	11		58	58	0		17	17	0
95	17150	10		47	60	•13		15	18	• 3
96	18; 0	10	35	35	57	-22	12	12	17	=5
97	18110	10	91	91		36	. 27	27	16	11
98	18:20	10	55	55	54	1	12	12	16	=4
- 99	18:30	10		48	58	•10		13	_16	•3
100	18;40	10	40	40	51	=11	15	15	14	1
_101	18:50	10 .	58	58	47	11	15	15	13	2
102	19: 0	10	56	56	43	13	13	13	12	1
103	19110	10		33	42	• 9	10	10		-2
104	19120	10	30	30	39	= 9	8	8	12	=4
105	19130	10		31	37	-6	12		13	•1
106	19140	10	43	43	31	12	15	15	11	4
107	19150	10	50	50	25	25	18	18	9	9
108	201 0	10		0	19	•19		0	7	=7
109	20110	10		0	10			0	4	-4
110	20120	10		0	0	0		0	0	0
111	20130	10		ő	ò	ŏ		õ	0	0
112	20140	10		<u>م</u>	A	<u> </u>		<u>^</u>	A	0
111	20:50	10		ő	•	à			ò	0
114	211 0	10		<u>_</u>		0		<u> </u>	0	0
145	21110	10		0		ě		Ň	0	0
446	21120	10		V	¥	······································				0
110	21,20	10		0	0	•		0	0	0
		<u> </u>		¥	· · · · · · · · · · · · · · · · · · ·			0	0	

1.-

TRIP	SCHED.	HOHY		BOARDING	COUNTS			CEBOARDI	G COUNTS	
	START		RAW	INTERP,	SHOOTHED	RESID,	RAW	INTERP.	SHOOTHED	RESID,
	21140	. 10		0			, -	.0	.0 _	. 0
119	21;50	10		0	0	0	•	0	0	0
1.20	221 0							0	Q	<u> </u>
121	22110	10		0	0	Ō		Ó	Ő	0
-122-	-22120	-10				· · · · · · · · · · · · · · · ·			0	0
123	22:30	10		Ō	0	ō		0	Ō	0
- 124-	-22:40	_10				0				
125	22,50	10		0	0	0		0	0	0
-125-	231 0			0						0
127	23;10	10		0	0	0		0	0	0
	-23+20	_10		0		••••••••••				
129	23:30	10		0	0	0		0	0	0
-130	23140-	_10		0		0				0
131	23:50	10		0	Ō	Ō		0	Ō	0
112	241.0	10			0			00		
TOTALS		-			•	5		•	•	
-132	18112-			8196		-235		-2170	2167	-10
										-

TABLE 3. SMOOTHED PASSENGER DATA FOR TOTAL TRIPS

b. Boarding/Deboarding Data Smoothed Over 11 Trips (Outbound Trips)

<u>.</u> -

THIP	SCHED.	нржү		BOARDING	COUNTS		t	DEBOARDI	NG COUNTS	
#	START		RAH	INTERP.	SHUDTHED	RESID.	RAW	INTERP.	SHOOTHED	RESID,
	at Fenv	vay		u _t	<u>บ</u> 			ut	^U t	
1	5146	360		7	6	1		28	21	7
- 2	611			7	8			29	27	2
3	0112	14	8	44	10	**	31	31	32	*1
	6138	13		44	43			42		2
	6141	3	16	16	14	2	52	52	45	7
	6152	11	24		16	8	63	63	48	15
9	712	12	16	16	18	= 2	57	57	52	5
9	71 9	7	14	14	20	96	38	38	57	=19
10	7116	7		17	21	=4		47	61	=14
11	7123	7		20	23	-3		56	67	-11
12	7130			23	26			02	73	•8
13	7:44	4		20	20	=2		/ J 85	/ 0 85	• 3
	7151				34			- 95		
16	7158	7	37	37	37	0	105	105	196	•1
17	81.5	7		43	39			113	112	1
13	8 12	7		49	41	8		121	115	6
19	8119	7	55	55	43	12	130	130	117	13
20	8126	7	43	43	43	Ø	173	173	117	>6
21	8133	7		45	42	3		148	115	33
22				47	41			123	113	10
20	8155	, a	4 9	4.7	40 T 2	,	×0	94	198	=14
25	-91-3		31	31	36		93-	92	106	
26	9111	8	25	25	36	=11	73	73	98	=25
27	9119	8		27	34	#7		80	92	=12
28	9127	8		29	32	= 3		87	86	1
29	9135	8		31	28			95	79	10
34	9143	8	34	34	26	8	103	103	75	28
31	9121	8	70	33	24	9	34	92	71	21
	1717	····	32					01	70	
34	13115	8	9	 5	27	•18	21	21	74	-53
35	12123	8			28	#11			76	•29
36	10 31	8	7	7	29	=22	56	56	76	-28
37	10139	8	23	23	28	•5	51 -	51	77	•26
38	12147	8		37	28	9		88	78	10
39	19122	8	52	52	27	23	129	128	30	46
46	111 3	····· -		45	31	1*			····· ··· ··· ···	60
40	11119	5		34	32	-1		00 T00	72	4 C
-43	11127			24				89	91	+2 -
44	11 35	6	16	16	29	=13	79	79	87	•8
45	11143	8		50	25		139	139	82	
46	11 51	8	18	18	23	95	57	57	78	-21
47	11125.	3	14		21	•7		21	77	- 20
48	121 /	8	15	16	20		44	44	/ 6	• • 2
53	12123	8		44	22	=8		23	76	= 14
- 51	12131-		12-		10		72	72		
52	12139.	8	18	18	18	0	97	97	64	33
	12147-			23	2:	2			73	
54	12155	8	28	28	24	4	89	89	80	9
	- 131-3-				27			: 83 -	- 85	
56	10111	9		18	29	=11		47	88	=41

TABLE 3.b (Cont.)

4.-

TRIP	SCHED,	HDHY		BOARDING	COUNTS			DEBOARDIN	G COUNTS	
#	START		RYA	INTERP,	SHOOTHED	RESID,	RAW	INTERP.	SPOOTHED	RESID.
57	13119	8	1	1	30	=29	11	11	88	=77
58	13:27	8	56	56	31	29	147	147	84	63
59	13135			49	31	18		128	79	49
66	13143	8		42	31	11		109	78	\$1
61	13191		35	35	31	4	98	90	80	12
62	13129	0		31	34			73	88	=15
<u> </u>	14115		23	23	35		10		97	
65	14123	5	20	29	31	=2		72	88	=16
66	14131			35	28	<u>7</u>		106	82	24
67	14:39	8	41	41	27	14	142	140	81	59
68	14147	8	70	70	28	42	191	191	85	106
69	14155	8	2	2	31	=29	59	59	95	=36
72	17: 2	7	5	5	32	=27	33	33	100	= 0 7
71	151 9	7	6	6	30	=24	40	40		-57
72	15:16	7		24	31	= 7		82	103	-23
73	12/23				32			120	105	
74	15150	2	02	22	311	32	101	101	102	-10
76	15144		8	A			39		121	884
77	15151	7	49	49	38	11	171	171	134	37
78	15158	7		47	42			163	143	22
79	161 5	7		45	46	=1		154	150	4
80	16:12	7	42	42	47	e 5	145	145	150	•5
81	16119	7		37	49	-12		161	152	9
82	16:26	7	31	31	51	=20	178	178	157	21
83	16133	7		61	51	10		188	150	38
84	16140	7	92	92	53	39	198	198	146	22
85	1014/			/3	24	17		100	143	17
87	171 4	'	15	78	54		84	122	470	-55
	171 5			48	53				136	= 37
89	17:15	7	62	62	49	13	115	115	125	=12
98	17122	7		54	42	12		122	115	7
91	17:29	7		45	37	8		129	113	16
92	17:36	7		36	35			137	117	20
93	17143	7	27	27	33	= 6	145	145	120	25
94	17:50	7	_11	11	29	-18	59	59	116	= 27
¥5	1/128			10	24	00		72	110	
90	18:14	9	24	24	23	92	160	132	100	64
	18122		20	17			104	120		
99	10:33	11	4	4	19	=15	51	51	95	= 4 4
100	18:43	16	8	8	20	•12	53	53	139	-47
121	18 53	10	37	37	18	19	124	124	92	32
155	191 3	14			15	19		105	80	
103	19:13	18	26	26	14	12	86	86	64	32
124	19123	10	8	8	12		- 25	55	23	2
125	19:33	15	21	21	12	9	112	112	49	
126	19193	16		9	11	-11		2	11	- 37
10/	201 3	10		2 7	0			2	23	=23
129	20113	12		Ø	3	•3		õ	15	=15
110	20123	12			2	•2			10	=10
111	28:33	110		0	ø	Ø		0	2	3
112	20143	16		Ø	Ø	Ø		Ø	ø ·	3
113	20 53	12		Ø	2	2		Ø	Ø	Ø
114	211 3	10		2	Ø	Ø		ø	Ø	Ø
115	21113	10		0	Ø			2	0	0
116	21/23	14		8	Ø	2		0	Ø	0
_117	21100	14		0	¥	U		10	0	0

1 -

THIP	SCHEU,	HDHY		BOARDING	COUNTS			DEBOARDI	G COUNTS	
#	START		RAH	INTERP,	SHOOTHED	RESID.	RAH	INTERP.	SHOOTHED	RESIO.
118	21:43	10		9	Ø	ø		9		
119	21153	15		0	0	6		8	8	0
120	221 3	1.0		Ø	ø	Ø		8	Ø	0
121	22113	1-		Ø	Ø	Ø		Ø	Ø	0
122	22:23	1.4		Ø	Ø	ø		0	0	Ø
123	22133	1.		Ø	8	0		Ø	Ø	0
124	22:43	10		Ø	Ø	C		0	ø	0
125	22153	1.4		Ø	0	0		0	0	0
126	231 3	1¢		Ø	2	8		0	0	Ø
127	23113	14		0	Ø	0		Ø	Ø	0
128	23 23	14		0	0	0		0	Ø	0
129	23133	12		0	0	0		Ø	0	0
130	23143	10		Ø.	0	Ø		0	0	Ø
131	23153	14		Ø	0	Ø		0	0	0
132	241 3	14		0	Ø	Ø		0	0	0
133	24113	14		Ø	0	0		0	Ø	0
134	24123	16		Ø	e	ø		Ø	ø	0
135	24133	16		8	6	Ø		Ø	9	0
136	24:43	14		Ø	0	ø		ø	Ø	Ø
137	24153	10		8	Ø	0		Ø	0	Ø
TUTALS										
137	19:7			3189	3176	131		9860	9818	859

Arriving at:

1.

						Newton	Chestnu	it	Beacon	Brooklin	e Brook.		
Trip	Riverside	Woodland	Waban	Eliot	Highland	Center	Hill	Reservo	ir Field	Hills	Village	Longwood	Fenway
t= 1	6:30	6132	6:34	6136	6:38	6140	6143	6:45	6:47	6149	6151	\$153	61 64
2	6:37	6139	6:41	6143	6:45	6147	6152	6:52	6:54	6156	6158	7: 3	71 1
3	6:44	6146	6:48	6150	6:52	6154	6157	6:59	7:1	71 3	71 5	717	71 8
4	6:51	6153	6:55	6157	6:59	71 1	71 4	7:6	7: 8	7112	7112	7:14	7155
5	6:58	71 2	7:2	71 4	7:6	71 3	7111	7:13	7:15	7117	7119	7121	7122
6	7: 5	71 7	7: 9	7:11	7:13	7115	7114	7:20	7:22	7124	7126	7:28	7129
7	7:12	7114	7:16	7:18	7:20	7122	7125	7:27	7:29	7131	7133	_7135	71.36
8	7:19	7121	7:23	7:25	7:27	7129	7132	7:34	7:36	7134	7142	7:42	7143
9	7:26	7125	7:30	7132	7:34	7136	7:39	7:41	7:43	7145	7147	7149	7152
10	7:33	7135	7:37	7139	7:41	7143	7145	7:48	7:50	7152	7154	7:56	7157
11	7:40	7142	7:44	7146	7:48	715-	7153	/:55	7:57	7159	61 1	<u>b13</u>	81 4
12	7:47	7149	7:51	7:53	7:55	7157	81 4	8: 2	8:4	81 6	81 -	8113	81:11
13	7:54	7156	7:58	81 0	8:2	_81_4	61 7	8: 9	8:11	6113	6115	8117	81.18
14	8: 2	814	8:6	81 8	8:10	9175	8115	8:17	8:19	6 21	6123	8125	81;26
15	8:10	6112	8:14	9116	8:15	012-	8123	8:25	8:2/	6125	6131	613.5	81:34
16	8:18	8 2 4	8:22	8124	8:26	0121	8131	8:33	8:35	613/	E130	6141	81.42
17	8:26	6 2°	8:30	8132	8:34	0137	8139	0:41	8:43	6142	614/	2157	81.20
18	8:34	6 36	8:38	8140	8:42	8167	014/	0:47	0:51	61 1	0153		61.20
19	8:42	6144	8:40	8148	0:50	-0124	-0-22	0.5	0.7	-21-5	91 3	6113	91 0
20	8:50	6152	8:54	8150	0100	5 1 C	91 3	9.13	9.15	01.7	9111	6121	1 01 22
21	8:58	71.	9:2	91.9	9:0	9116	7111	9.21	0.73	9114	9127	9:29	1 01 30
22	9: 6	91 6	9:10	9120	9.14	6124	5127	9-29	9.23	0173	6175	9137	91 38
23	9:14	9117	- 9.76	3120	9.30	9132	0175	9:37	9.39	6141	6143	9145	9146
24	9:22	9124	9.20	9127	9.30	914.	9137	9:45	9.47	91/9	G 1 5 1	9153	91.54
25	9:30	9134	9.47	9144	9.16	9140	9151	9:53	9.55	9157	9159	121 1	101 2
25	9:30	914	9.50	9:52	9.54	9156	61=5	10: 1	10:3	121 5	121 7	121 9	10110
27	9:40	7.1.6		101 0	10: 2	121 4	121 7	10: 9	10:11	12113	12115	12117	19118
28	10 . 7	101 4	10: 6	101 8	10:10	12112	12115	10:17	10:19	11121	12123	12125	18126
29	10:10	12112	10 14	10:16	10:18	1:12.	12123	10:25	10:27	12129	12131	12:33	10134
20	10 • 18	1212	10:22	10124	10:26	12124	13131	10:33	10:35	12137	12139	12141	18142
32	10.26	1.120	10:30	10132	10:34	12135	12139	10:41	10:43	12145	12147	1:149	18:58
32	10 - 34	12135	10:38	10140	10:42	10144	12147	10:49	10:51	12153	16155	12157	10158
34	10:42	12144	10:46	10:48	10:50	18152	12155	10:57	10:59	111 1	111 3	11: 5	111 6
35	10:50	12152	10:54	10156	10:58	111	111 3	11: 5	11: 7	11 9	11111	11113	11114
36	10:58	111 .	11: 2	11: 4	11:6	11: 4	11111	11:13	11:15	11:17	11 19	11121	11122
37	11: 6	111 6	11:10	11:12	j1:14	11116	11119	11:21	11:23	11127	11/27	11 29	11130
38	11:14	11116	11:18	11:20	11:22	11/24	11127	11:29	11:31	11133	11 35	11:37	11:38
39	11:22	11124	11:26	11128	11:30	11:32	11/35	11:37	11:39	11341	11143	11145	11140
40	11:30	11132	11:34	11136	11:38	1114.	11 43	11:45	11:47	11149	11151	11153	11124
41	11:38	1114-	11:42	11144	11:46	11148	11 51	11:53	11:55	11157	11159	121 1	121 2
42	11:46	11145	11:50	11152	11:54	11:51	11159	12: 1	12: 3	121 5	121 /	121 9	12110
43	11:54	11155	11:58	121 0	12: 2	121 4	121.7.	12: 9	12:11	121-3	12117	12:17	12115
44	12: 2	121 4	12:6	121 8	12:10	12112	12117	12:1/	12:19	12121	12123	12127	12120
45	12:10	12112	12:14	12116	12:18	1212:	15153	12:20	12:27	12129	12+31	12133	12142
46	12:18	1212	12:22	12124	12:20	12125	12131	12:22	12:33	1213/	12147	12140	12150
47	12:26	1212*	12:30	12132	12:34	12120	14:34	14.71	12:43	12142	1211 7	12157	12180
48	12:34	1213/	12:38	12140	12:42	12144	12147	12:49-	12:51	12153		11 5	12120
49	12:42	12144	12:40	12148	12:50	12152	12155	12:57	12:59	111	113	+ 2	T+ 0

TABLE 4 (Cont.)

Arriving at:

1-

TD 1 D	D./		11	Eliot	Uichland	Newton	Chestn	ut	Beacon	Brookli	ine Brook		
IRIP	Riverside	woodland	waban	EITOL	nightand	Center	Hill	Reserv	ior Field	Hills	Villa	ge Longwoo	od Fenway
t= []	12:50	12152	12:54	:2:56	12:58	14-4-	11 3	1: 5	1: 7	.11.9	1111	1113	1114.
51	12:58	11 6	1: 2	12.4	1: 6	11 8	1111	1:13	1:15	1117	1119	1121	1122
52	1: 6	11 -	1 • 10	1112	1:14	1116	1119	1:21	1:23	1125	1127	1129	1130
57	1 • 14	4 4 4 6	1 - 1 -	1.20	1:22	1124	1127	1:29	1:31	1127	1175	1137	1138
5/	1.22	111	1.10	1120	1 - 30	4 4 4 7	4125	1.37	1.39	1035	1132	1+45	1144
	1.22	1124	1.20	1120	1.38	1032	1137	1.15	1.47	1141	1145	4457	4154
2.5	1:30	1:32	1:34	1135	1.00	114.	1143	1:45	1.55	1142	1:51	1153	1154
56	1:38	114.	1:42	1:44	1:40	1144	1151	1:53		. 1157	1159	21 1	212
57	1:46	1:4-	1:50	1152	1:54	1150	115?	2: 1	2: 3	21 5	21_7	21 9	2110
58	1:54	1154	_1:58	2: 0	2:2	21 4	21 7	2: 9	2:11	2113	2112	_2117_	2118
59	2: 2	21 4	2: 6	28 8	2:10	2112	2112	2:17	2:19	2121	2123	2125	2126
6Ú	2: 9	2111	2:13	2115	2:17	2110	2122	2:24	2:26	2128	213	2132	2133
61	2:16	5115	2 - 20	2,22	2:24	2125	2120	2:31	2:33	0175	2127	2139	2140
62	2.23	212	2.27	3.20	2:31	2113	2136	2:38	2:40	2101	2.3/	2146	2147
62	2.30	6167	2.21	2123	2:38	21.	21.3	2 . 45	2:47		2144	5167	2154
03	2.30	6134	2.54	2830	2.45	6140	5140	2.40	2.54	2147	<351	2173	31 4
64	2:37	5137	2:41	2143	2.52	214/	2154	2:52		2156	2155		
65	2:44	2105	2:48	2:50	4:52	2154	2157	2:59	3: 1	31 3	31 5	31 7	31 8
6 6	2:51	2153	2:55	2:57	2:59	31 1	31 4	3:6	3: 5	311:	3112	3114	3115
67	2:58	31 -	3: 2	3: 4	3: 6	31 3	3:11	3:13	3:15	3117	3119	3121	3122
68	3: 5	31 7	3: 9	3111	3:13	3115	3112	3:20	3:22	3124	3125	3128	3129
69	3:12	3114	3:16	3118	3:20	3122	3125	3:27	3:29	3171	3113	3135	3136
70	3:19	3121	3+23	3+25	3:27	3129	3172	3:34	3:36	21.74	3.4	3142	3143
71	3.26	7103	3.30	3.23	3:34	3114	7179	3-41	3:43	3130	7447	3149	3150
72	3.33	3120	2.27	3134	3:41	71.7	3131	3.19	3.50	3142	314/	1154	3157
72	3.00	3137	3,37	3139	3-48	5.4,	3140	3.40	3.57	3152	3154	-3150.	41.4
73	3:40	3142	3:44	3146	2.55	3154	3123	3:55	1.1	3159	41 1	48 3	
/4	3:4/	3149	3:51	3153		315/	41	4: 2	4: 4	41 6	41 3	4113	
75	3:54	3156	3:58	41 0	4:2	41 4	41 7	4:9	4:11	4117	4115	4117	4118
/6	4: 1	48 3	4: 5	41 7	4: 9	4111	4814	4:16	4:18	412-	4122	4124	4125
//	4: 8	481.	4:12	4814	4:16	4116	4121	4:23	4:25	4127	4127	4131	4132
78	4:15	4117	4:19	4121	4:23	4125	4128	4:30	4:32	4174	4136	4138	4139
79	4:22	4124	4:26	4128	4:30	4132	4135	4:37	4:39	4141	4143	4145	4146
80	4:29	4131	4 - 33	4135	4:37	4119	4142	4.044	4:46		416.	4152	4153
81	4.36	4175	4.00	4 + 47	4:44	4146	4149	4.51	4 - 53	4147	41.55	4150	51 0
82	1. • 1. 3		4.40	4444	4 - 5 1	4 + = 3	41=6	1.59	5.0	6197	- <u> </u>	5	51 7
83	4:45	4 4 4 7	4:4/	4149	4.58	4125	4152	4:50	5.0	512	51 4		B11A
84	4:00	4152	4:54	4150	5.5	24 .	21 3	2: 2	5.40	51 3	5111	2+13	5114
95	<u>4</u> :5/	4159	5:1	51 3		21 /	5115	5:12	5:14	5116	5114	-2122	5121
85	5: 5	517	5: 9	5111	5:13	5115	5118	5:20	5:22	5124	5126	5128	5129
80	5:13	5115	5:17	5119	5:21	-5123	5125	5:28	5:30	-5132	5134	5136	5137
8/	5:21	5123	5:25	5127	5:29	5131	5134	5:36	5:38	5144	5142	5144	5145
88	5:29	5131	5:33	.5135	5:37	5139	5142	5:44	5:46	5148	5152	_5152	5153
89	5:40	5142	5:44	5146	5:48	5150	5153	5:55	5:57	5159	61 1	61 3	61 4
90	5:50	5152	5:54	5156	5:58	61 0	61 3	6: 5	6: 7	61 9	6111	6113	6114
91	6 0		6. 4	61 6	6:8	611.2	6113	6.15	6:17	4440	6801	6123	6124
92	6 • 10	41.2	6.14	4116	6:18	4104	4123	6 • 25	6 . 27	4+00	61 21	6133	6134
93	6.20	<u>91.1.6</u>	6.24	6.26	6.7A		4177	6.25	6.37		0131	4147	6144
94	6.20	0.55	0:24	6436	6.38	6134	4 7	6.05	6.47	0134	0141	4167	4164
95	0:30	. 6132-	0:34	DL1D.	6.00	0144	0 + 4 - 2	0:40	2.77	6149	6151		0129.
,,,	6:40	6.42	6:44	6140	6.59	0154	0150	0:22	0:5/	6159	71.1	71 3	/
96	0:50	6152	6:54	6156	0:58	¢	71.5	1:5		71.9	7111	_/113_	/114
97	1:0	71 2	7:4	716	1:8	7116	7113	1:15	7:17	7119	7121	7123	7124
98	7:10	7112	7:14	7116	/:18	712-	7123	7:25	1:27	7129	7131	Z! 33_	7134
99	7:20	7122	7:24	7126	7:28	7130	7133	7:35	7:37	7139	7141	7143	7144
100	7:30	7132	7:34	7136	7:38	7146	7143	7:45	7:47	7149	7151	7153	7154
101	7:40	7142	7:44	7:46	7:48	7152	7153	7:55	7:57	7159	81 1	81 3	81 4
102	7:50	7152	7:54	7:56	7:58	61 3	81 3	8: 5	8: 7	61 9	A111	8113	8114
103	8: 0	81 2	8 . 4	82 6	8:8	811.	8113	8:15	8:17	6140	8101	8123	8124
104	8:10	81.0	8 - 14	8116	8:18	512	8123	8 . 25	8:27	6120	9.1.6.4	8133	8134
105	8 . 20	8114	8.21	8126	8:28	8172	8173	8.25	8.17	- <u><u></u></u>	6131	RIAT	8144
100	9.30	0.25	0.24	0.24	8.38	0134	81.55	9.45	9.47	0139	0141	A187	8154
T (0	0:30	_ 8132	0:34	- 0110	- 0.10	0140	0143	0:42	0:4/	0149	8151		. 9129

FIGURE 6. EXPECTED NUMBER OF PASSENGERS WAITING AT STATION J
1. Given a train has arrived at t-1, the second train,
 arriving h₁ minutes later, should expect the probability
 of having exactly x passengers accumulated at station
 j to be:

$$Pr(x; p_{j}\lambda_{t}h_{1}) = \frac{e^{-p_{j}\lambda_{t}h_{1}}(p_{j}\lambda_{t}h_{1})^{x}}{x!}$$

2. The third train arriving h₂ (=m₁+m₂) minutes later, should expect the probability of having exactly y passengers to be:

 $\Pr(y; p_j \lambda_t^m 1^+ p_j \lambda_{t+1}^m 2) = \frac{e^{-p_j (\lambda_t^m 1^+ \lambda_{t+1}^m 2)} (p_j \lambda_t^m 1^+ p_j \lambda_{t+1}^m 2)}{y!}$

V. DISTRIBUTION OF THE DWELL TIME

The density function for the derivation of dwell time at each station is found to be dependent on the total "onoff" movement, M, taking place while the train remains stationary. This relationship is significant regardless of the hour of the day, the direction of the trip, or even the individual station configuration.

That is,

٠.

 $T_d = \alpha + \beta M + \varepsilon$

where α is the minimum dwell time, β the average rate of boarding and unloading, and ε , a random variable with zero mean and variance σ^2 .

This relationship was first shown for the PCC (President's Conference Committee) trains. The coefficients α , β , and σ , estimated by means of simple least squares regressions for a sample of stations, are listed in Table 5. Data where extra delay is indicated by the presence of equipment or fare problems, etc., are taken out of the data base before the regression analyses were performed. The figures in parentheses below the coefficients represent their respective standard errors. All the regressions are significant and the linear trends are readily observable from the scattergrams shown in Appendix 2. The low R²'s, however, indicate the magnitude of the random fluctuation of dwell time even when a portion of it can be accounted by the delay incurred by boarding and unloading passengers.

TABLE 5. STATISTICAL ANALYSIS OF DWELL TIME (PCC TRAINS)

λ.

<u>Station j</u>	n.j	Regression j	<u> </u>	residual sum of squares, SSEj
Highland	35	$T_d = 10.75 + .89M$ (1.58) (.18)	4.99	821.70
Newton Center	34	$T_d = 9.88 + .92M$ (1.88) (.15)	5.51	971.52
Brookline Village	37	$T_d = 8.19 + .99M$ (1.08) (.07)	3.60	453.60
Reservoir	34	T _d = 8.45 + .96M (1.04) (.11)	3.65	426.32
Fenway	37	$T_d = 9.88 + .77M$ (1.19) (.09)	4.14	599.89
Chestnut Hill	34	$T_d = 9.29 + 1.03M$ (1.16) (.13)	3.74	447.60
Woodland	37	$T_d = 7.79 + 1.35M$ (1.03) (.13)	4.72	779.74
Combined	248	$T_d = 9.49 + .93M$ (.48) (.04)	4.47	4915.30

It is quite natural to suppose that a generalized dwell time vs. total movement relationship will be adequate for all stations and for both inbound and outbound trips. The scattergrams suggest that the seven regression lines could be pooled together to give a better precision on the estimation of the general level and slope. A formal test was accomplished to demonstrate whether they are in fact identical.

To test H_{o} : all α_{j} 's are equal and all β_{j}^{j} 's are equal, against H_{1} : either the α'_{j} 's are not equal or the β_{j} 's are not equal or both, we need to examine the ratio of the "between station variations" (which is the total variation minus the within station variation) to the "within station variation". Hence, the following statistic is defined.

$$F = \frac{SSE - \Sigma SSE}{(n-2) - \Sigma (n_j - 2)} \frac{\Sigma SSE}{\Sigma (n_j - 2)} j_{\overline{2}}$$

1 -

The decision to reject or accept H_0 is based on whether F is too large or too small. Compared to the 95th percentile of an $\mathcal{J}(12,234)$ distribution, F (=1.80) is small. Hence the hypothesis of the adequacy of a general relationship to represent all stations is accepted. This is also valid for the outbound trips, the details of the comparisons are shown in Appendix 2.

To generate or simulate dwell time at any station, therefore, one may simply use:

 $T_d = 9.5 + .9 \times \text{total movement} + \varepsilon + \text{delay}$ where ε is a random number generated from a N(0, 4.5²) distribution. The delay is an arbitrary nonnegative number, incorporated into the equation for any delay due to equipment problems, fare problems, or waiting for passengers etc.

The dwell times for the Light Rail Vehicles display a different relationship, however; and are subjected to much variation. The linear regression is still significant, $(R^2 = .69)$ even though it results in different coefficients. The generalized form for the LRV is:

 $T_{d} = 10.75 + 1.46 \text{ total movement} + \Psi + \text{delay, where } \psi \text{ is}$ again a N(0,7:16²) random variable.

VI. CONCLUSION AND SUMMARY

1.1

Generation of the passenger demands and the dwell times at the stations based on the distributions and regression equations developed is important to the operational performance model which seeks the optimum train schedule to accommodate the undulating demand throughout the day. The high variability of the trip data does not allow for the estimation of passenger demand profile for each station, nor can it be used to test the assumption that the total trip demand at a certain time follows a Poisson distribution. This is because the time series thus presented represents only a single sample out of the many possible series from the sampling population. However, the choice of the discrete Poisson distribution is a most logical one because the arrival of passengers can be thought of as a series of random events in a time continuum. Hence the number of passengers per time period would be expected to form a Poisson distribution. Figure 7 is a flow chart illustrating the steps necessary for the simulation of passenger loading and unloading activities at each station.

The estimates of the total inbound and outbound passenger volumes with their respective standard errors set the lower and upperbounds for the general level of daily passenger activity. This can be helpful in the determination of the number of trains to be dispatched on any working day when no unusual circumstance affecting the passenger load is imminent. To conclude, this study has examined the input passenger data to the model, and developed estimation procedures to meef the model requirements.

*To be estimated.

2.4

FIGURE 7. DECISION FLOW CHART

APPENDIX 1: MARKET SHARE ANALYSIS

APPENDIX 1A: AVERAGE LOADING PASSENGERS (Inbound morning trips)

Hourly						Row	tota	1
Period	6-7	7-8	8-9	9-10	10-11	11-12	Ri	$P_{i} = R_{i}/N$
Stations							-	
Riverside	4	17	18	11	11	5	66	.119
Woodland	3	11	15	10	6	3	48	.086
Waban	2	6	16	6	3	4	37	.066
Eliot	4	6	11	3	3	2	29	.052
Highland	3	9	17	14	9	6	58	.104
Newton Center	5	10	19	12	10	8	64	.115
Chestnut Hill	2	7	12	4	5	4	34	.061
Reservoir	5	6	13	4	3	1	32	.058
Beacon Field	1	4	10	2	2	3	22	.040
Brookline Hill	3	9	16	7	6	10	51	.092
Brookline Village	7	13	19	8	5	6	58	.104
Longwood	2	3	7	4	1	3	20	.036
Fenway	3	7	10	4	5	8	37	.066
Column total, C j	44	108	183	89	69	63 N=	556	1.00

$$\mathcal{K}^{2} = \sum_{n=1}^{\infty} \frac{(\text{Oij} - \text{Eij})^{2}}{\text{Eij}} = 38.2 \quad \text{where } \text{Eij} = \frac{\text{RiCj}}{N}$$

$$E(\mathcal{K}^{2}) = \frac{(r-1)(c-1)}{N-1} = \frac{(13-1)(6-1)}{556-1} = 60.11$$

$$V(\mathcal{K}^{2}) = \frac{2N}{N-3} (n_{1}-u_{1})(n_{2}-u_{2}) + \frac{N^{2}}{N-1} u_{1}u_{2}$$
where $n_{1} = \frac{(r-1)(N-r)}{N-1}, \quad n_{2} = \frac{(C-1)(N-c)}{N-1}$

$$u_{1} = \frac{N\sum_{n=2}^{\infty} Ri^{-1} - r^{2}}{N-2}, \quad u_{2} = \frac{N\sum_{n=2}^{\infty} cj^{-1} - c^{2}}{N-2}$$
Hence $V(\mathcal{K}^{2}) = 152.0$

Under the null hypothesis that is stated on page 6, the statistic,

$$7 = \frac{\chi^2 - E(\chi^2)}{\sqrt{V(\chi^2)}} = -1.78$$

1 -

is distributed as N(0,1) and its value is compared to the 95th percentile (=1.96 or - 1.96) of a standard normal distribution. Since -1.78 is greater than -1.96, the hypothesis is accepted.

APPENDIX 1B: AVERAGE LOADING PASSENGERS (Inbound afternoon trips)

Hourly										
Period	12-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	Ri	p _i =R _i /N
Stations										
Riverside	5	6	4	10	12	6	6	5	54	.088
Woodland	4	7	5	9	3	5	8	2	43	.070
Waban	2	4	6	6	5	3	3	3	32	.052
Eliot	4	1	2	4	4	1	4	1	21	.034
Highland	7	3	5	5	9	6	4	3	42	.069
Newton Center	11	8	13	12	6	9	8	5	72	.118
Chestnut Hill	6	4	8	11	3	14	5	3	54	.088
Reservoir	4	5	11	5	9	4	1	2	41	.067
Beacon Field	1	3	6	2	2	2	1	1	18	.029
Brookline Hill	6	6	19	7	3	2	2	4	49	.080
Brookline Village	9	5	11	12	4	7	5	5	58	.095
Longwood	7	2	6	7	2	3	3	2	32	.052
Fenway	8	8	13	23	25	9	5	6	97	.158
Column Total C,	$\overline{74}$	62	109	113	87	71	55	42	613	1.000

As in Appendix 1A, the Z statistic is derived.

 $\chi^{2} = 112.04$ $E(\chi^{2}) = 84.14$ $V(\chi^{2}) = 163.2$ $Z = \frac{\chi^{2} - E(\chi^{2})}{V(\chi^{2})} = 2.18$

4.-

The 95th percentile of a N(0,1) distribution is 1.96. Since Z is very close to 1.96, for all practical purposes, the null hypothesis is again accepted.

4.

APPENDIX 1C: AVERAGE NUMBER OF UNLOADING PASSENGERS (Outbound morning trips)

							Pow	
Hourly							Total	
Period	6-7	7-8	8-9	9-10	10-11	11-12an	n. P _i	p _i =R _i /N
Stations								
Fenway	13	11	17	9	7	10	67	.145
Longwood	3	2	9	6	4	3	27	.059
Brookline Village	2	3	18	8	6	6	43	.093
Brookline Hill	1	l	13	9	5	6	35	.076
Beacon Field	0	0	3	1	2	3	9	.019
Reservoir	2	2	3	5	2	4	18	.039
Chestnut Hill	1	5	15	7	4	6	38	.082
Newton Center	1	5	19	17	8	14	64	.139
Highland	4	5	7	5	4	6	31	.067
Eliot	1	3	2	2	2	2	12	.026
Waban	2	2	7	7	3	4	25	.054
Woodland	4	4	9	10	6	11	44	.095
Riverside	6	10	13	4	6	9	48	.104
Column Total C _i	40	53	135	90	59	84 N	1=461	1.000

 $\chi^2 = 56.12$ $E(\chi^2) = 60.13$ $v(\chi^2) = 115.8$ Hence, $Z = \frac{\chi^2 - E(\chi^2)}{V(\chi^2)} = -.37$, which is greater than -1.96,

therefore, the null hypothesis is accepted.

2 -

									Row	
Hourly								5	[otal	
Period:	12-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	R _i	p _i =R _i /N
Stations										
Fenway	11	9	8	10	11	10	5	8	72	.088
Longwood	2	7	1	8	4	3	5	3	33	.040
Brookline Village	7	9	6	12	13	15	11	8	81	.099
Brookline Hill	3	4	7	8	9	12	6	8	57	.069
Beacon Field	3	3 -	4	4	4	7	5	3	33	.040
Reservoir	6	9	8	8	12	9	6	4	62	.076
Chestnut Hill	7	6	8	8	13	7	6	5	60	.073
Newton Center	5	12	5	11	19	23	10	13	98	.119
Highland	15	5	5	9	15	12	8	9	78	.095
Eliot	3	4	3	6	8	7	2	6	39	.047
Waban	2	4	2	5	11	11	5	5	45	.055
Woodland	7	12	7	12	18	11	4	5	76	.093
Riverside	7	9	10	12	21	12	6	10	87	.106
Column Total, C;	78	93	74	113	158	139	79	87	821	1.000

 $\chi^{2} = 63.24$ $E(\chi^{2}) = 84.10$ $V(\chi^{2}) = 164.13$ Hence, $Z = \frac{\chi^{2} - E(\chi^{2})}{V(\chi^{2})} = -1.63 \text{ which is greater}$ than -1.96, therefore, the null hypothesis is again accepted.

APPENDIX 1E: MARKET SHARES OF PASSENGER ACTIVITIES FOR EACH STATION

4.4

	Unloading	Passengers	Loading Passengers				
1	Inbound Aorning Trips	Inbound Afternoon Trips	Outbound Morning Trips	Outbound Afternoon Trips			
Station i	Pi	Pi	Pi	Pi			
Riverside	.00	.00	.00	.00			
Woodland	.00	.00	.01	.00			
Waban	.01	.01	.01	.00			
Eliot	.00	.01	.01	.02			
Highland	.01	.04	.05	.02			
Newton Cente	er .05	.07	.06	.07			
Chestnut Hil	.07	.04	.01	.07			
Reservoir	.07	.18	.19	.09			
Beacon Field	.01	.07	.05	.03			
Brookline H:	ill .08	.08	.08	.14			
Brookline V	illage.12	.25	.31	.14			
Longwood	.43	.13	.10	. 32			
Fenway	.15	.12	.12	.10			

2...

×

×

<u>.</u> -

OUTBOUND .

n=33 T_d=9.05+.83M (1.19) (.13) $\sigma = 3.90$

COMBINED n=68 $R^2=.48$ T_d≈9.99+.85M (1.0) (.11) o=4.56

F=1.96 accept H_o that the the regressions for the outbound and inbound trips are identical.

<u>.</u> -

1 -

TOTAL MOVEMENT

NEWTON CENTER (LRV) INBOUND AND OUTBOUND R²≈.63 $T_d = 13.62 + 1.22M$ (2.14) (.15)

4.-

4.1

TOTAL MOVEMENT

×

TOTAL MOVEMENT

TOTAL MOVEMENT

FENWAY (LRV) (<u>INBOUND AND OUTBOUND COMBINED</u>)

*The data vary too much for any estimation of linear relationship between the dwell time and the total movement.

4 -

,

1.

. .

·

4.-

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

1-

U. S. DEPARTMENT OF TRANSPORTATION POSTAGE AND FEES PAID 613

